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Theoretical expressions are derived for the heat and mass transfer charac- 
teristics in a turbulent reacting flow in the initial themal section of a 
ring channel. The corresponding Sturm-Liouville problem has been solved 
numerically. Eigenvalues, eigenfuctions, and expansion coefficients have 
been tabulated. Quantitative criteria are derived for the asymptotic cases 
of quasifrozen and quasiequilibrium flow states, together with the expres- 
sion for the length of the initial thermal section in a chemically non- 
equilibrium turbulent flow. 

We consider a hydrodynamically stabilized chemically nonequilibrium flow in a channel 
formed by coaxial cylinders having inert impermeable surfaces, where there is a constant heat 
flux (qc1=const, qc2=0) 

There is homogeneous reversible reaction involving the dissociation of nitrogen dioxide; 
the inlet flow has a uniform profile for the temperature T o and a chemically equilibrium 
composition x0=~(T0) 

The differential equations and simplifying assumptions have been given in [i]; to derive 
the theoretical heat and mass transfer characteristics, one needs to solve 

f (~.) F (D G~ OPo~I = - ~ 0  [ F ( ~ ) 0 ~  O--~f-~ ] - ?~ PF (~)" 

P(~, 0)-----0, ( OP "~ =- -1 ,  ( 0 % )  
(i) 

in which P = W/• W = (1-l-x) O--Of. 
Gretz's method [i] has been applied to (i): separating the solution into a part with 

stabilized heat transfer P~($) and an intial thermal section P0(~,n): 

P (~, n) = P- (~) + Po (~., n), 

P.  (~) = lira P (~, ~1), lira Po (~, ~1) = O. 
"q -~ ,= TI~O 

For the part with stabilized heat transfer, we have a boundary,value problem of the 
second kind: 

( 2 )  

(F (~) P~)" - -  y~P.F (0  = 0, 

P" (0) = - -1 ,  P" (1) ---- 0. 
(3) 
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The (3) treatment has been solved by the pivot method [I]. 

The heat and mass transfer in the initial thermal section can be described by 

6~ F (~) [ (~) OPo 
0~1 

0 [F(~) OPo J__,72poF(~), 
O~ L ~ O~ 

( OPo ) ( OPo ) 
Po(~, O ) = - - P ~ ( ~ ) ,  k O~ 7~=o--0 '  = O. t O~ )~=~ 

(4) 

We represent the solution to (4) as an eigenfunction series: 

1 

- -  i" P~ OinF [d~ 
~ ~ (5)  Po = C ~ n  (~) exp (--e~]), C~, = 1 

.=o j ef,~d~ 
0 

We substitute (5) into (4) to get an eigenvalue problem: 

-- ~;%F = O, 

, '~(0)=0,  , j O ) = O ,  
(6)  

in which ~ = (e~6) 2 is a reduced eigenvalue. 

The form of (6) is identical with that in case we have solved previously [2] for the 
eigenvalues for a tube (the geometry is incorporated by means of the integral coordinate 
~, the functions F($) and f($), and the thermal parameter ~ for the chemical disequilibrium 
in turbulent flow). 

By definition 

1 

G - ~ _ 9_6(1 - k )  j. ,l',~fd~. 
l l + k  

S F[d~ o 
0 

(7) 

We integrate (6) from 0 to 1 and use the boundary conditions to get 

i 20 (1 - -  k) i" q,.~d~. 2O(1- -k )  .~,~ ~ ,~Ffd~=~ 1-]-k 
l + k  o o 

(8)  

Substitution of (8) into (7) gives 

= ,~Fd~. ( 9 ) 

The o p e r a t o r  L ~  (F@j)'-- 2 = ~ , F ~  is self-conjugate because ~n satisfies homogeneous condi- 
tions at both boundaries; the self-conjugate feature of L~n implies that the eigenfmc- 
tions are orthogonal with weights Fe [3]: 

1 

~{:, ,Ffd~ -- O. (10)  
o 

To eliminate the possibility that roots might be overlooked in the numerical soluT:ion, 
we made a priori estimates for the X~; the [2] method gave approximate theoretical exw:es- 
sions for the eigenvalues: 
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TABLE i. 
G = 0.1384; fm = 1,143; gm = 68.55) 

Eigenvalues (Re = 105; k = 0.5; Prf= 0,7; PrT =0.8; 

7 =  10 

7 
o 

%~ I 0  ~ 

(72  ~ 1 9 1 , 7 )  

7 
o 

~ } =  103 

(72  ~ 1 ,  917"10"~) 

c~ 

,832 0 1,917 1,890 0,9846 191,7 181,4 94,63 1,917 
15,93 18,79 17,96 9,37 208,4 212,7 Ill,O 11,918 

7,0161 60,75 62,67 62,77 I 32,75 I 248,1 262,1 136,7 I 1,922 
10,1731125,0 120,7 ]127,1 I 66,31 1310,41329,7 172,0 11,928 
13,32 1212,3 205,7 214,4 111,8 395,5[419,3 218,8 11,934 
16,47 1319,5 503,2~528,8 275,9 1,947 

1,960 448,7 
19,62 313,3 321,6 167,8 

344,2 444,0 450,8 235,2  633,51659,6 

1,688 8,809 
1,7201 8,975 
1,7521 9,14I 
1,785 } 9,311 
1,8181 9,483 
1,851 9,658 
1,885 9,837 

a ~ e .  = ~ 2 ~ + ~%~, (11)  

in which )~=~: and a~ are the roots of the transcendental equation J1(an)=0 [4]. 

The [5] method was used in solving (6); we speciffied ~ from (ii) and the values for 
the eigenfunction in the first ~n~v-~0 , with the values for the eigenfuctions in the sub- 
sequent steps given by the recurrent formula 

hz 2 2 " 
1 + -~- (%'r - -  ~ I k - l )  

h 

h 1 -- yB h- i  
~l~nk_2 hB , N>/k>/2, 

1 + -  F ,~-~ 

(12) 

in which B k ---- (F'/F)~=~ h. 

We refined the eigenvalue at which the eigenfuction satisfies the boudnary condition 
for ~ = 1 by division into halves; the start of the search range was derived from the 
theoretical (ii) estimator: 

lO 

Here the ~n(~) are unsymmetrical functions with respect to the central line of the 
annular channel and the maximum-velocity line; the normalization condition was taken such 
that the ~n varied in the range [0, i]: for each l~, the value of @~nu($) was scaled to 
the maximum value of #~nu($). 

The lfi (n = 0-i0), the eigenfunctions ~n(~), ~n, ~n(0), ~n(1), and the expansion coef- 
ficients C n were tabulated for the ranges Re=|~-~|0 6, k=0,1--0.9;y=0--5.10 3 (with Prf = 0.7; 
Pr T = 0.8). 

2 from (ii) with the numerical results; the radial coordinate Table 1 compares the %n th 
replacing R is accordance with [6] not only extends the wall region and thus increases the 

integration step in the numerical solution but also enables one to obtain results for high 
Re and y because of of the use of the scaled eigenvalues i n~-- (snG) 2 and the generalized 
disequilibrium parameter 2_ Yz- (YG) ~ The scale parameter G was calculated for the entire range 
in Re and k from the approximating formula 

O = 24Re ---~ = 0.3828Y-~ ~ (13)  
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lOZ 

F i g .  1. Reduced e i g e n v a l u e s  X~ (Re = 10'*-106; 
k = 0 . 3 - 0 . 9 ;  ~ = 5 - 5 . 1 0 3 ) :  1) n = 0; 2) n = t ,  
..., ii) n = I0. 

Figure I shows the theoretical and numerical results for %~ (n=0--10) for all the Re 
and k; Fig. 2 gives an example of how the eigenfuctions vary across the channel, ~(~) , for 

= 50 (developed reaction). 

Table 1 also gives the (6) eigenvalues k~f for the Sturm-Luouville problem for y~ = 0 
(chemcially inert flow). 

The heat transport in turbulent flow of a chemically inert material is [i]: 

Os = Or| 4- 01o, Of| = bl + Oh1 (D, 0to = OP~o (~ % 

We represent the solution on the initial thermal section as 

(14) 

Pro (~, 'q) = ~ Cnf~,s (.~) exp (--8If'q), 
r t ~  1 

C n f  = 

- -  j h I (~) Ff, ,#d~ ( 15 ) 
0 

1 

S , fFfd  
0 

in which ~nf(~) is the solution to (6)  for ~=0 and hi(~) is the solution to the ~:or- 
responding boundary -value problem [i]. The the heat transfer characteristics in a tur- 
bulent inert flow are 

Oj (0) -- -Oj + Oh I (0) [I 4- ~]Anl  exp (--e~fN)] ; A,v _-- - C'v$'v (0) . 
.=~ h t (0) ' 

O~ag-- O](1)- -Ot  Ghf(l) [1 + E B~sexp(--e~tn)] 
2 = - - 7  " 

n ~ l  

B,, I_  C,~!%~t(1) . Null 2 
h~ (1) o~  (o) - -  ~ j  

(16)  

Null/Nut1 | = 
~A 
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?! \ .,A. X,  , 

Fig. 2. Eigenfunctions r (Re = i05, 
= 50; k = 0.5): I) n = 0; 2) n = i; ...; 

6) n = 5. 

One can compare the results for the Sturm-Liouvill'e treatment for an inert flow derived 
here and in [7]; the differences over the internal parameters (8~f, Cnf,~nl) are due to the 
use of different normalization conditions and solution methods and also the use of different 
turbulent characteristics vT/v, Pr~ , but they do not lead to discrepancies in the relative 
Nusselt numbers Nusl/Nutl| more than 1.3% (Table 2). 

We found that Nun/Nuji~ is dependent not only on Z/de c and k, as [8] implies, but also on 
Re, which confirms our numerical results on heat transfer. 

The theoretical results give the approximating expression (Sap~1%): 

Nut,| NuI~ =FI (Re '  te)q-F2(Re' k)(--~-e)m' l < ( i ) < ( - - ~ , ) r . '  (17) 

in which Y = (Re/10~); m=-O.0906-0.301Y-~ Yz = a0 + alk + azk2; a0 = 0.81778-0.24589 log 
Y + 0.08711 (logY)2; am = -0.I1796-5.422-i0-4Y 1.524; a2 = 0.07635 + 0.001149Y z. aa6; F2 = b0 + 
blk + b2k2; b 0 = 0.7009 + 0.107431ogY-0.05858 (logy)2; bl =0.9665-0.7051og2 + 0.4 (log 
y)2; b2 = -0.68875 + 0.4825 log Y - 0.30375 (log Y)~; k = 0.3-0.9; Re = 104-106. 

The length of the initial thermalsection in an inert flow is dependent on Re, the chan- 
nel geometry via k, and the divation 6f~ in the Nusselt number from Nuj1=: 

( ' - ~ e )  "~ [2 - -  0.25 (Sf. - -  1)][(28.3 .qt_ 46.7k - -  33k 2) + 14.1 9.2k y-O, 243], ( -  + 5,5k 2) 

in which ~f~ is in percent. 

An approximate expression is derived for the change in the relative adiabatic temperature 
of the outer surface on the initial thermal section: 

�9 . [ OIhd/Ofad~ ~ th (0.0211 -I- 0.06103Y "1 - -  0.04063Y -2) z . (18) 

~fad- by not more If one defines (z/de)fad~ as the length at which Of~ad differs from * 
than 5%, then 

(z/d.)fa d | ~ 50+ II (Y-- I) ~ (19) 

Generalizing functions have been introduced [i] for convenience in calculating the 
heat and mass transfer coefficients, which for the initial thermal section are written as 

~f P| .=0 
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TABLE 2. Comparison of Results for Nufl/Nufi~ 

z/d e 
Source 

Procedure 
(16) 

Procedure 
(17) 
[7] 
[81 

Procedure 
f16) 

Procedure 
(17) 
[7] 

1,659 

,651 
,629 

1,507 

1,534 

1,536 
1,545 

Re:2,036-10L k:0,3472 

1,470 ,379 1,281 1,223 

1,461 ,369 1,268 1,210 
1,464 ,377 1,281 1,225 
1,351 ,277 1,200 1,157 

Re~1,223.105; k=0,3472 

1,405 1,339 1,263 1,217 

1,409 1,343 1,267 1,222 
1,422 1,352 1,270 1,221 

1,168 

1,156 
1,171 
1,118 

1,117 

1,177 
1,174 

t,t22 

1,110 
1,125 
1,085 

1,113 

1,138 
1,133 

I 
1,079 ] t ,041 

I 
1,0171 1,023 
1,082 [ 1,043 
1,055 [ 1 ,O26 

1,092] 1,054 

1,100 1,059 
1,093 1,055 

S=S| Nul, | I+ P|174 

I + s N~ exp (--~) 
a=0 

n== 1 

(20)  

Sad = Sad. [ I -~ Po ( l )  -- Po 1 -]- - -  __-- Sad | 

Po. (1) -- >~ 20~'ad o. 

1 + ~ D,~ exp (--~N) 
n~0 

r162 

I + Z B.f exp (--sift) 
n=l 

[ __][ o ,0 0, ]i �9 (o) - uP (o) = o. (o) I + p~ (o) I + 
os (o) p| (o) of. (o) 

r  GP(1) ----q)| 1 + P~ 1 -k - - - - ~  , 
o~ (1) p. (1) or~ (1) 

in which 

M~= >. , P.(0)-->| ' P.(1)-->= ' 

with P0(~, N) defined from (5) and Plo(~, ~]) from (15). 

We write those functions for the stabilized heat-transfer part [I] as 

~== oP. , ~j=zn~ ~.(o)= ~P-(~ 
~j I + k ' or- (o) ' 

6 N u ~ .  2 
or| (o) = ~ + Ghj (o), S| = 2 [P. (o) P~]' Nuu~ = 6h~ (0) " 

Sad- 

From (20) and (21), we get theoretical formulas for the transfer characteristics on 
the initial thermal section: 

I) mean-mass temperature and composition 

(21) 
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0=- I--}---~ ~'~ (1 + • V/. _ l-~• ( I - -~) ;  

2) temperature and composition at the inner (heated) surface: 

3) 

0(0) - -  0!(0) (l+• Y*(O)  0,(0)• (1 - -  cD (o)); 
1 + •  i + •  

temperature and composition at the outer (adiabatic) surface 

(23) 

O(I)--  Os(1) (1+•  Y*(1)= O1(1)~(l--CD(1)); (24) 
1 + •  I -k•  

4) Nusselt number for the inner surface and dimensionless adiabatic temperature for 
the outer one: 

N u ~ :  (1 --k- ~) N U Y ~ l  + ~S ' Oad* = 10~a+ ~ (1 q_ ~Sad). (25) 

A temperature profile self-similar with respect to the length O ~ ( 0 ) - - O ~ [ ( ~ ) ,  N u t l ~ f ( ~ ) .  
i s  e s t a b l i s h e d  fo r  c e r t a i n  l e n g t h s  ( z / d e ) ~  f o r  a t u r b u l e n t  c h e m i c a l l y  n o n e q u i l i b r i u m  flow 
in a r i n g  channel  having qc = c o n s t a n t ,  as fo r  t he  f low of  a chemica l l y  i n e r t  medium. 

I f  one d e f i n e  ( z / d e ) ~  as the  d i s t a n c e  from the  i n l e t  a t  which Nu d i f f e r s  from the  
s t a b i l i z e d  va lue  by not  more than  6%, t he  l e n g t h  of  the  i n i t i a l  the rmal  s e c t i o n  in  a t u r -  
bu l en t  n o n e q u i l i b r i u m  flow in an annu la r  channel  i s  d e f i n e d  by 

~ N .  = 0 '1466[0.21--0,0525(6--1)+0.005(6--1)  ~] y-O,8986 (26) 

The effects from the initial section on the mean-mass characteristics vanish at much shorter 
lengths: 

7~.~ ~ 4.6 - -  0,7635 (6 - -  1) 0~4597 (27) 

At lengths greater than those defined by (26) and (27), one can use approximate theoretical 
expressions for the generalized functions [I]. 

The (20) functions vary over the range [0, i]; when they are I, chemcial enthalpy ex- 
change in the flow is completely inhibited, and the flow behaves as inert (chemically frozen 
flow): 

O=Of, Y*=Y*(O)=Y*(1)=O, NUl=NU n. (28) 

At the other limit, where they are 0, local thermochemical equilibrium is established: 

- 6, of  (0) _ oe (0), r *  = ,,Re---- V * ,  
o ~  I ~ - - ~ ~ 1 6 2  ( 9 ( 0 ) =  _ l q •  _ . . . .  ( 2 9 )  

Nu 1 = (I + ~) Nu/1 ~ Nule, Oad= O~ad/(1 q- • ~ Oad z. 

These two states are attained asymptotically. One can speak of quasifrozen and quasi- 
equilibrium states. Firstly, theexact definition is dependent on the assumption made about 
the deviation from the asymptos states and secondly, (22)-(25) imply that there is an exact 
description for each heat or mass transfer characteristic. 

We define the quasiequilibrium state from the characteristic thermal conditions: 

0 - - 0 ~  ~5~,  Nule--Nul ~6,N u, O*ad--O*ad~ ~Sea~. (30) 
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o,8 

S 

0,8 

0,~ 

I , 

l 

e 

3 

10 z /0 ~ 

Fig. 3. Generalizing function ~ (Re = l0 s , k = 0.5); 
i) 7 = I0; 2) 20; 3) 30; 4) 40; 5) 50; 6) 60; 7) 70; 
8) 80; 9) 90; 10) 100; ~ = 200. 

o,~ 

0,e 

Fig. 4. Generalizing function S (Re = 10s, k= 0:5); 
I) y = I0; 2) 20; 3) 30; 4) 40; 5) 50; 6) 60; 7) 70; 
8) 80; 9) 90; i0) i00; ii) 200; 12) 300; 13) 400; 14) 
500; 15) 600; 16) 700; 17) y = 102 . 

If we take 6e=5% , the criterion for the quasiequlibrium state for all thermal charac- 
teristics is put as 

7 ~ 7 . 6 6 Y  -~ 
(31) 

The thermochemcial equilibrium state as regards the mean mass characteristics is attained 
with less stringent constraints on the flow parameters: 

(Tz~l)~ ~ 40 - -  1.565 (Tr - -  I)~; 

n : 0,529 + 0,1155 lg Y + 0,0675 (lg }0% 

(32) 

The quasifrozen state is defined by 

.... of -- Nu 1 - -  Ntlll 
Nusl ~ 8rNu; er~d ~< 8Sad. (33) 
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If we take 8f=5o/o , the criterion for that state on all the thermal characteristics is 

~21~] ~ 1,25 -- 0.81(~ -- 1)~ ~, 

and for the mean-mass characteristics 

(34) 

Ivin)m ~< 0.107 + 0,0125 (~, --D. (35) 

As t h e  (20)  f u n c t i o n s  a r e  f o u r - p a r a m e t e r  o n e s  F i = F i ( r e ,  k ,  ~,  n)  on t h e  i n i t i a l  
thermal section, it is not possible to obtain convenient and reliable approximations; for 
the initial thermal section, one instead has tables and graphs (Figs. 3 and 4). 

We have thus derived the theoretical expressions (20) and (21) together with (22)-(25) 
and these with the [i] approximations enable one to calculate the transfer characteristics 
on turbulent nonequilibrium flow in an annular channel from the inlet to the part where there 
is stabilized heat transfer (from the chemically frozen to the equilibrium state). For high 
temperature differences, the theoretical expressions, the tables, and the graphs should be 
used with successive approximation as described in [9, i0]. 

NOTATION 
4z/de 

R=r/A, ~]-- RePr/ , dimensionless coordinates (de= 2A, A=r~--q); O=(T--To)(qcIA/L:)-~ , dimen- 
[ qctA ~--I 

sionless temperature; Y* = (x-- X0e) ~' [--~, ) dimensionless NO concentration; ~' = AHrM/Cpf M2 

(3) (4) (2) increment in molar enthalpy due to reaction; z ~' (Xe--Xoe) (2--Xe); AHrM= 2HNoq- HO~--2HNo, , = (T--To)  

~{C_~_e] , gas reactivity; ~ Damkeller number; xd=A~/D~3 characteristic dif- 
--\ C p t  ] = "~d/" % , , 

f u s i o n  t i m e ;  xcl=nKd(2-k-Xe)a x , c h e m i c a l  r e l a x a t i o n  t i m e ,  n = P/RT, m o l a r d e n s i t y ;  Kd, d i s s o c i a -  

t i o n  rate constant; x, molar fraction of NO: 72 = ~ (I q- ~) , thermal disequilibrium parameter; 
f(R)=:Uz(R)/U; g ( R ) = ! +  vT Pry , T (1 ) - -T  ,, pr~ ; k=,-Jr~;  R~=k/(1--~); a,=(X--k)-l:  Z~-(l~e/~0,) ; %d-- ~ S  , 

~dR; G= dR;P(O)=P(~=O);P(1)=P(~=I) ; 1'~ = (?O) 2 , thermal param- ~=-~- 
R, R! . . . . . . . . . . . . . . . . . . .  

eter for chemical disequilibrium in turublent flow; k~ = (enO) ~ reduced eigenvalue; gm=g(R = 
Rm); [m= f (R= Rm) Subscripts: ~, stabilized ~eat-transfer range O, thermal initial sec- 
tion (in P and PI) and conditions at inlet (T O and x0); t, turbulent parameter; f and e, 
frozen and equilibrium parameter; M, molar quantity; m, coordiante for maximum rate, 
approximating error; i, internal surface. 
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