HEAT AND MASS TRANSFER IN A TURBULENT NONEQUILIBRIUM FLOW IN
AN ANNULAR CHANNEL. PART 2. THERMAL INITIAL SEGMENT
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and L. N. Shegidevich

Theoretical expressions are derived for the heat and mass transfer charac-
teristics in a turbulent reacting flow in the initial themal section of a
ring channel. The corresponding Sturm—Liouville problem has been solved
numerically. Eigenvalues, eigenfuctions, and expansion coefficients have
been tabulated. Quantitative criteria are derived for the asymptotic cases
of quasifrozen and quasiequilibrium flow states, together with the expres-
sion for the length of the initial thermal section in a chemically non-
equilibrium turbulent flow.

We consider a hydrodynamically stabilized chemically nonequilibrium flow in a channel .
formed by coaxial cylinders having inert impermeable surfaces, where there is a constant heat
flux (gei=const, gep=0)

There is homogeneous reversible reaction involving the dissociation of nitrogen dioxide;
the inlet flow has a uniform profile for the temperature T, and a chemically equilibrium
composition xp=ux.(Ty)

The differential equations and simplifying assumptions have been given in [1]; to derive
the theoretical heat and mass transfer characteristics, one needs to solve

, P 3 #
fOFOE-S-= [F(&) az] W PF (),
(1)

oP 3 oP
PE 0 =0, —_ =1, (— =0,
0 ( )§=o ( 0t )§=1

in which P=W/iG, W =(14+%)06—86;.

Gretz's method [1] has been applied to (1): separating the solution into a part with
stabilized heat transfer P,(£) and an intial thermal section P¢(E, n):

P(E, n)=Pm(§)+PO(Ef 71),

(2)
Po@®=1lmPG ), limPy@ m=0.
1+ . LiEed
For the part with stabilized heat transfer, we have a boundary-value preblem of the
second kind:
(F(® Po) —¥iP<F(®) =0,
(3)

PL(0)=—1, PL(l)=0.
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The (3) treatment has been solved by the pivot method [1].

The heat and mass transfer in the initial thermal section can be described by

opP 0 gpP
rE -~ 2 [re-Lo]| - irFo.
an gt | 03
(4)
Pole 0= —P.@, () =0 (Z2) —0
08 Jg—g 08 /=1
We represent the solution to (4) as an eigenfunction series:
1
o — | P FidE
PO = E Cnlpn (g) exp (—81217])’ Cn = 01 (5)
= | Frvids
b
We substitute (5) into (4) to get an eigenvalue problem:
(F$a) + AaFfpn — yrbaF = 0, o)

P (0)=0, ¥.(1)=0,

in which Xﬁ::@nGV is a reduced eigenvalue.

The form of (6) is identical with that in case we have solved previously [2] for the
eigenvalues for a tube (the geometry is incorporated by means of the integral coordinate

£, the functions F(&) and f(&), and the thermal parameter y% for the chemical disequilibrium
in turbulent flow).

By definition

[worfa
e = 20 (e )
1+ k& /
gFde 0
b
We integrate (6) from 0 to 1 and use the boundary conditions to get
2G(1—k) . } 2 2G(1—k) ¢ .
S A (W FfdE = vy ————= | Vo FdE. (8
e A J
Substitution of (8) into (7) gives
= 2G (1 —k) ¢
Bo = B20ZA) (g gy (%)
A(14+ k) b

The operator Lwnzz(ngy—-viFwn is self-conjugate because ¥, satisfies homogeneous cordi-
tions at both boundaries; the self-conjugate feature of Ly, implies that the eigenfunc-
tions are orthogonal with weights Fe [3]:

1
[ bnbmFfdE == 0. - (10)
0

To eliminate the possibility that roots might be overlooked in the numerical soluxzion,

we made a priori estimates for the A;; the [2] method gave approximate theoretical expres-
sions for the eigenvalues:
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TABLE 1. Eigenvalues (Re = 10°; k = 0.5; Prg=0.7; PrT =0.8;
G = 0.1384; f, = 1.143; g, = 68.55)

p=10 y=102 p=10°
w2 =1,017) wi=191,7) (2 =1,917-10%)

n an To & 5 [E :!;

3 ' e ' ' .

g 5 2 2 5| B} g| 8| 8| %

N<t m@ﬁ &: Nmﬁ N&: Ngt Nwﬁ C\l&*: N‘<‘: mw:
0 0 0 1,917] 1,890 0,9846| 191,7]181,4| 94,63} 1,917| 1,688 8,809
1 3,832 15,93| 18,79} 17,96 | 9,37 }208,4|212,7|111,0 |1,918}1,720]| 8,975
2 7,016 60,75| 62,67 | 62,77 | 82,75 |248,11262,1(136,7 | 1,92241,752| 9,141
3 10,173 ]125,0 120,7 |127,1 66,31 |310,4)329,7|172,0 | 1,928 1, 785 9,311
4 13,32 1212,3 1205,7 |214,4 [111,8 395,51419,31218,8 | 1,934 1,818 9,483
5 16,47 319,5 |313,3 321,6 |167,8 503,2|528,81275,9 {1,947 1,851 | 9,658
6 19,62 |448,7 |444,0 [450,8 235,2 633,6|659,6(344,2 | 1,960 1,885 | 9,837

2 aszg
n
Mth = M+ =" = + Az, (11)

fm

in which X} =42 and a? are the roots of the transcendental equation Jy(@)=0 [4].

The [5] method was used in solving (6); we speciffied A2 from (11) and the values for
the eigenfunction in the first #np~0 , with the values for the eigenfuctions in the sub-
sequent steps given by the recurrent formula

hz )
+ 5 (V2 —Mafra)

Ypp = 21",1;,“] 3 -
14 -2~Bh—x
(12)
—ta,
Ay NZED2,
14 "2‘Bh~l

in which B, = (F'[F)y_-

We refined the eigenvalue at which the eigenfuction satisfies the boudnary condition
for £ = 1 by division into halves; the start of the search range was derived from the
theoretical (11) estimator:

2
lno = ______knth .
10
Here the ¥n(%) are unsymmetrical functions with respect to the central line of the
annular channel and the maximum- veloc1ty line; the normalization condition was taken such
that the ¥ varied in the range [0, 1]: for each A}, the value of V¥j,,(£) was scaled to
"the maximum value of \bn aulE)- '

The A3 (n = 0-10), the eigenfunctions P (E)s Yn, Y2 (0), Pn(l), and the expansion coef-
ficients C, were tabulated for the ranges Re=10¢=105, £=0.1—0.9; y=0-5-108 (with Prg = 0.7;
Pre = 0. 8).

Table 1 compares the )\ th from (11) with the numerical results; the radial coordinate
£ replacing R is accordance with [6] not only extends the wall region and thus increases the
integration step in the numerical solution but also enables one to obtain results for high
Re and y because of of the use of the scaled eigenvalues 12—(snG)2 and the generalized
disequilibrium parameter y2=(vG)? . The scale parameter G was calculated for the entire range
in Re and k from the approximating formula

G = 24Re™"**% = 0.3828Y " **° 5, L 1.6%. (13)
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Fig. 1. Reduced eigenvalues Aj (Re = 10“-10%;
k = 0.3-0.9; vy = 5-5.10%): 1) n=0; 2) n =1,
., 11) n = 10.

Figure 1 shows the theoretical and numerical results for A2 (n=0—10) for all th: Re
and k; Fig. 2 gives an example of how the eigenfuctions vary across the channel, y.(E) , for
= 50 (developed reaction).

Table 1 also gives the (6) eigenvalues Ajf for the Sturm-Luouville problem for YT 0
(chemcially inert flow).

The heat transport in turbulent flow of a chemically inert material is [1]:

8; = Ot + B0, O = O5+ Gy (B), By = GPyy (&, M) (14)

We represent the solution on the initial thermal section as

P,ﬂ) (Es 1]) = 2 Cnf'pnf (E) eXp (““8?1[7]),

— [ g (B Fse | (15)
]
an - 1 ?
, j‘PﬁfFde
g

in which ¥n7(8) is the solution to (6) for y2=0 and #;(¢) is the solution to the cor-
responding boundary -value problem [1]. The the heat transfer characteristics in a tur-
bulent inert flow are

8;(0) = 6f+€h,(0){1 + zAnfexp(—s,,m)] Ang = Cn;‘Fzé)(O) :
¥

@;A::

0,(1)—8 Ghy (1 5
5 ( )2 fo_ 72() [1-}-28”&1{9(—*6%{‘]}];

n=|

nj:&ﬁp_'_l_f_(l_)_; Nun:_____z_______; (16}
Ay (1) 6;(0) — 6y '
1
NUH/NUNQ., =

14 Z Ay €Xp (—Enm)
n==1
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10%,
13 ...

Fig. 2. Eigenfunctions ¥,(£) (Re
Yy=50; k=0.5): 1)n=20; 2)n
6) n = 5. :

One can compare the results for the Sturm-Liouville treatment for an inert flow derived
here and in [7]; the differences over the internal parameters (B%, Cui, Yns}) are due to the
use of different normalization conditions and solution methods and also the use of different
turbulent characteristics v:fv, Prz , but they do not lead to discrepancies in the relative
Nusselt numbers Nuy/Nusie more than 1.37 (Table 2).

We found that Nuy/Nuje is dependent not only on z/dec and k, as [8] implies, but also on
Re, which confirms our numerical results on heat transfer.

The theoretical results give the approximating expression (8xp<<1%):

NUn _ F(Re, B+ F,Re, B 2", 1< (2 'Z)
Nit— = FuRe A+ Fe () 1< =)<(=). (17)

.08711 (log¥)?; a; = —0.11796-5.422.10"*Y *5%%; 4, = 0.07635 + 0.001149Y * 336; F, = b, +
bok2; b, = 0.7009 + 0.10743 log Y — 0.05858 (log Y)?; by = 0.9665—0.705 log ¥ + 0.4 (log
; b, = —0.68875 + 0.4825 log Y — 0.30375 (log Y)?; k = 0.3-0.9; Re = 10“-10°.

The length of the initial thermal section in an inert flow is dependent on Re, the chan-
nel geometry via k, and the divation g, in the Nusselt number from Nujw:

in which Y = (Re/10*); m=~0.0906~0.301Y"°*362; F, = a, + a,k + a,k?; a, = 0.81778-0.24589 log
0
+

( ; ) >[2—0.25(;, — 1)]{(28.3 + 46.7k — 33k%) + (—14.1 — 9.2k 4- 5,588 Y0243,
e /fw .
in which 8¢, is in percent.

An approximate expression is derived for the change in the relative adiabatic temperature
of the outer surface on the initial thermal section:

6faa/Of g = th [(0.0211 + 0,06103Y~1 — 0.04063Y ) ; ] . (18)

€

If one defines (z/dg)fade as the length at which 6fF,; differs from ©fag. by not more
than 57, then

(2/de)raq = 50+ 11 (¥ — 1)°-25, (19)

Generalizing functions have been introduced {1] for convenience in calculating the
heat and mass transfer coefficients, which for the initial thermal section are written as

D=

lIQI

= 0. [1 + _P}__)" ]E(D-[l + 2 My exp(—eam)] ,

« n=0

g
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TABLE 2. Comparison of Results for Nug,/Nug;.

2,/de
Source 1]213[5]7{10114[20‘30
Re=2,036-10¢, k=0,3472
Proced
ey 1,659 | 1,470 | 1,379 | 1,281 | 1,223] 1,168 | 1,122} 1,079 1,041
Pr((’%e)dure’ 1,651 | 1,461 | 1,369 | 1,268 | 1,210} 1,156 | 1,110{ 1,017} 1,023
7] 10629 | 17464 | 1,377 | 1,281 | 1,225] 1,171 | 1,125] 1,082 1,043
(8] 1’507 | 17351 | 1,277 | 10200 | 17157 1,118 | 1,085} 1,055 | 1,026
Re=1,223-105; £=0,3472
Procsdure 1534 | 1,405 | 1,339 | 1,263 | 1,217 1,117 | 1.113] 1,092 1,054
Prfﬁ'(;'dure 1,536 | 1,400 | 1,343 | 1,267 | 1,222) 1,177 | 1,138| 1,100 1,059
{71 10545 | 10422 | 1,352 | 1,270 | 1.221] 1,174 | 1,133] 1,093 | 1,055
- 14+ S Ny exp(—enn)
= D u — O ¥
y floo P.(0)—P -
( 14 Z Apg exp (—ehpm)
n=1
R 6P () T I+ ¥ Daexp(—eam)
I e | 2L S~ ,
P.()—P. 20% ... )
I+ 3 Bryexp(—enm)
n=1
GP 0
1 (0) P (0) foo ( 6. (0)
1 P 1
8 (1) P. (1) 6. ()

in which

Mn — C:\pn - N — Cn N’Jn (0) tlpn] : Dn — Cn p‘pn (1) “:ﬁn]
P. P.(0)— P, P.()— P,

with Py(E n) defined from (5) and Py (E m) from (15).

We write those functions for the stabilized heat-transfer part [1] as

= GP. = k GP .. (0)
(Doo = = 5 O = 21 ——— , (D,, 0) = ——l

@j f gl 1-{—}2 ( ) @fee (0)
- GNuﬂm — 9

®f°° (O)= @f‘*—-th (0), Sc° = 5 [P,m (O)——Pw], Nu“m :—G—’{j—-(-o—)—, (21)
G[P. (1) —P.] «  Ghy(1)
S @ TN T T 9 0 o
ad 2@f*adm fad 9

From (20) and (21), we get theoretical formulas for the transfer characteristics cn -
the initial thermal section:

1) mean-mass temperature and composition
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@fﬂ

8= Eaalt

6 — o _
H;n (14+x%D), ¥*= —Q);

2) temperature and composition at the inner (heated) surface:

8 (0) 0y (0) %
O(0) = —L ) *00) = WX . (23)
(0) T (1+x®(0), Y*(0) i (1 —o0)
3) temperature and composition at the outer (adiabatic) surface
(1) ' O (D xn
o) = £\ D % (1) e of )
(M Tin (I4+x® (1)), Y*(1) 1w (1—o()); (24)

4) Nusselt number for the inner surface and dimensionless adiabatic temperature for
the outer one:
Oz
1+ =%

_ (49 Nuy
Nuy = 14+%S

., Ong= (1 4+ %S59- (25)

A temperature profile self-similar with respect to the length B0 (0) —O7=F (1), Nutj1e7f ().
is established for certain lengths (z/dg)e for a turbulent chemically nonequilibrium flow
in a ring channel having q, = constant, as for the flow of a chemically inert medium.

If one define (z/dg)w as the distance from the inlet at which Nu differs from the
stabilized value by not more than &%, the length of the initial thermal section in a tur-
bulent nonequilibrium flow in an annular channel is defined by

Neng = 0.1466 [0.21 — 0.0525 (6 — 1) 4 0.005 (6 — 1)2] Y0+ 8985, (26)

The effects from the initial section on the mean-mass characteristics vanish at much shorter
lengths:

Y21, 5> 4.6 — 0,7635 (5 — 1)°+45°7, (27)

At lengths greater than those defined by (26) and (27), one can use approximate theoretical
expressions for the generalized functions [1].

The (20) functions vary over the range [0, 1]; when they.are 1, chemcial enthalpy ex-
change in the flow is completely inhibited, and the flow behaves as inert (chemically frozen
flow):

@

=08, Y*=Y*(0)=VY*(1)=0, Nu, =Nuy. (28)

At the other limit, where they are 0, local thermochemical equilibrium is established:

D1

8, (0)

6= 6., 00 =1

»

]

T =06,(0), Y*=x8,=7Y},

-+

(29)
Nuy = (1 + %) Nuy, = Nuy,, @:d= @;“ad/ (A+2%)= e:d.e-

These two states are attained asymptotically. One can speak of quasifrozen and quasi-
equilibrium states. Firstly, the exact definition is dependent on the assumption made about
the deviation from the asymptotic states and secondly, (22)-(25) imply that there is an exact
description for each heat or mass transfer characteristic.

We define the quasiequilibrium state from the characteristic thermal conditions:

5—86 Nu,, — Nu O3a— 054 (30)
=% <5 e Ny , —2d Pade 5 n
8 ¢ Ny, ™ 8,
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o wt o z/d,

Fig. 3. Generalizing function ¢ (Re = 105, k=0.5);
1) vy = 10; 2) 20; 3) 30; 4) 40; 5) 50; 6) 60; 7) 70;
8) 80; 9) 90; 10) 100; y = 200.

-h~_*-—-~_~_—-—‘-“‘—?-‘\\\\
4
08 3
1 7
064
g% 7
4\
13
021 77
i 7
I /A
1 70 z/d,

Fig. 4. Generalizing function § (Re = 10°%, k=0.5);
1) y = 103 2) 203 3) 30; 4) 40; 5) 50; 6) 60; 7) 70;
8) 80; 9) 90; 10) 100; 11) 200; 12) 300; 13) 400; 14)
500; 15) 600; 16) 7005 17) vy = 103,

If we take §,=5% , the criterion for the quasiequlibrium state for all thermal charac-
teristics is put as ’

31
7>>7.667 09227, (31)

The thermochemcial equilibrium state as regards the mean mass characteristics is attainad
with less stringent constraints on the flow parameters:

(v*1), = 40 — 1.565 (y, — 1)*;

(32)
n= 0,529 40,1155 Ig Y + 0,0675 (ig Y)z.
The quasifrozen state is defined by
8, —86 Nu, — Nu 8 — 6%
b — A8y —28 12 by
e Nu, ™ 6fa ¢ (33)
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- If we take &;=5% , the criterion for that state on all the thermal characteristics is

Ty < 1,25 — 0.81(y, — 1) 1842, (34)

and for the mean-mass characteristics

(v*1)se < 0.107 +- 0.0125 (y, —1). (35)

‘As the (20) functions are four-parameter ones F; = Fi(re, k, v, n) on the initial
thermal section, it is not possible to obtain convenient and reliable approximations; for
the initial thermal section, one instead has tables and graphs (Figs. 3 and 4).

We have thus derived the theoretical expressions (20) and (21) together with (22)-(25)
and these with the [1] approximations enable one to calculate the transfer characteristics
on turbulent nonequilibrium flow in an annular channel from the inlet to the part where there
is stabilized heat transfer (from the chemically frozen to the equilibrium state). For high
temperature differences, the theoretical expressions, the tables, and the graphs should be
used with successive approximation as described in [9, 10].

NOTATION

R g’iimehsionless coordinates(de=2A, A=ry—ry); O =(T—Ty) (ge;4/A)-1 » dimen-
( goiA V-1
A

4z/d
R=r/A, 1= "ﬁ?f:?e;_

. . . . M,
sionless temperature; V*=— (x—x¢)a’ — , dimensionless NO concentration; a'=AHrM/Cpf—22—

f
3) 4) (2)

(2—x); AHtM=2(HNO+ Ho, — 2HNo, s increment in molar enthalpy due to reaction; % — & (Ko — Xog)

(T— Ty}
ef_(gpe) » gas reactivity; p=ry4/tc » Damkeller number; T3q=A%D,;, characteristic dif-
pf

fusion time; <

tion rate constant; x, molar fraction of NO: y*=fi2(1+%) , thermal disequilibrium parameters;

! =1nK4(@~—xJa, s chemical relaxation time, n = P/RT, molar density; K3, dissocia-

— P T()—~T
F(R)=U(R)/U; g(R)= 1+-—-\: p:f 3 k=rire; Ry =ki(1—£); Ry=(1—k)~1 Y = (Re/104) - ; Q:dZ_—(q(I)A/Z,?
T Cc1 f
R R, ‘
i 1 1 1 2 2 -
=—(——=dr; G=(——dR, PO=PE=0;P()=PE=1) ; ¥ = (v@* , thermal param
E=— £l-v@ | i 7 ©=PE=0);P()=PE=1)

eter for chemical disequilibrium in turublent flow; A2=(exG)* reduced eigenvalue; &m=g(R=
Rp): fm=F(R=Rpy) . Subscripts: =, stabilized heat-transfer range O, thermal initial sec-
tion (in P and P;) and conditions at inlet (T, and x,); t, turbulent parameter; f and e,
frozen and equilibrium parameter; M, molar quantity; m, coordiante for maXimum rate,
approximating error; 1, internal surface.
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